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We present a numerical investigation of mean-flow induced spiral turbulence in a generalized

Swift-Hohenberg model in two dimensions.

We show the existence of a spatiotemporal chaotic

state comprised of a large number of rotating spirals in a large aspect ratio system. This state
is not predicted by classical theory. We calculate the spatial correlation functions for the order
parameter, vorticity, and mean-flow field in order to characterize more quantitatively the spiral
chaos state. Our simulations show that there is a power-law behavior in the temporal dynamics of
spiral defect chaos. Our study suggests that this spiral defect state occurs for low Prandtl numbers
and large aspect ratios. We use as global variables the spectra entropy and the magnitude of the
vorticity to characterize the transition from the global parallel roll state to the localized spiral state.
Unfortunately we cannot determine whether this transition is gradual or sharp.

PACS number(s): 47.20.—k, 47.27.—i, 47.32.—y

I. INTRODUCTION

The spatiotemporal chaotic behavior of spatially ex-
tended, dissipative systems has drawn considerable in-
terest in recent years [1]. The transition to spatiotem-
poral chaos has been observed in various physical sys-
tems such as Taylor-Couette vortex flow [2], Faraday sur-
face waves [3], traveling waves in binary mixtures con-
vection [4], optical instabilities [5], lames [6], chemical
reactions (7], and Rayleigh-Bénard convection [8]. Spa-
tiotemporal chaos (sometimes called weak turbulence) re-
sults from a breakdown of global spatial coherence. How-
ever, a macroscopic coherence length—a length scale be-
low which the pattern appears coherent—may still be
observed. Recently, a transition from a global parallel
roll state to a chaotic spiral defect pattern (which we
will refer to loosely as spiral chaos below) has been ob-
served in Rayleigh-Bénard convection in both a Bous-
sinesq and non-Boussinesq fluid (CO; gas) [9,10], for a
large aspect ratio system, at moderate Rayleigh num-
bers and low Prandtl number. The spiral chaos state has
also been observed in the convective fluid of SFg [11].
In previous experiments on convection in CO, gas [12],
the spontaneous formation of a global rotating spiral pat-
tern state was observed at a lower Rayleigh number. The
chaotic state observed more recently in the experiment
[9] is comprised of a large number of rotating spirals. Spi-
rals nucleate, interact, and annihilate, yielding a macro-
scopically disordered pattern. There have been several
previous numerical investigations of global spiral and spi-
ral chaos states by using a generalized Swift-Hohenberg
equation [13-16]. We found that chaotic spiral patterns
are spontaneously formed during the transition from the
conduction state to the convective roll state, in agreement
with the experimental observations. An interesting issue
raised by the experiments and simulations is to identify
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the mechanism responsible for spiral chaos. The station-
ary parallel roll state and the secondary instabilities have
been obtained by Busse [17]. However, his classical the-
ory [17] does not predict spiral chaos states. We are
not able to identify the origin of spiral chaos in this pa-
per. Another interesting issue raised by the experiments
and simulations is the nature of the transition from the
globally ordered parallel roll state to the globally dis-
ordered but locally ordered spiral chaos state, which we
study in this paper. Pomeau [18] has proposed that the
transition to spatiotemporal chaos in an extended dissi-
pative system generally occurs in one of two ways. The
first scenario involves a “supercritical transition,” char-
acterized by the development of velocity and temperature
fluctuations at approximately the same rate through-
out the ordered (laminar) system. The second scenario
is a “subcritical transition,” where the disorder (turbu-
lence) occurs in localized patches in time and space, and
the system exhibits coexistence regimes of order (“lami-
nar”) and disorder (“turbulence”). Although our results
are qualitatively consistent with Pomeau’s “supercritical
transition,” we are not able to confirm this in detail, in
that we cannot distinguish between a gradual and a sharp
transition.

In this paper we extend the work reported in Ref. [14]
to examine several additional features. These include
a study of the spiral chaos state as a function of the
Rayleigh number and for two values of the Prandtl num-
ber. This includes a study of the transition from the
parallel roll to the spiral state. We study the vorticity
energy and spectra entropy near the onset of the spi-
ral chaos state as a way to characterize quantitatively
the transition. As we noted above we cannot confirm
Pomeau’s scenario of a supercritical transition, although
our results are not inconsistent with this picture. Our
results for the large scale mean-flow field, vertical vortic-
ity, and the temporal dynamics of the spiral state have
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not yet been studied experimentally. Since sidewalls are
known to play an important role in pattern formation in
Rayleigh-Bénard convection, we also study the effects of
sidewall forcing in this paper. Our work strongly sug-
gests that the spiral chaos state is indeed an intrinsic
property of the system. That is, this state does not arise
from confinement effects due to the sidewall. We also
note that our work involves a larger aspect ratio than in
our previous study and is comparable to the experiment.

Recently, Decker, Pesch, and Weber [19] have also
studied spiral-defect chaos in Rayleigh-Benard convec-
tion, starting from a more complete description of this
problem than that which is given by the generalized
Swift-Hohenberg model that we study [14]. Their start-
ing point is the Boussinesq approximation for the full hy-
drodynamic equations with realistic rigid-rigid boundary
conditions. They project these equations onto vertical
modes and eliminate the dependence on the vertical co-
ordinate z (this dependence is thought to be irrelevant)
leave a dependence on time t and the two remaining hor-
izontal coordinates z,y only. They then make an ap-
proximation and assume that only the first few modes
are relevant for the dynamics. Their model equations es-
sentially consist of a set of three partial differential equa-
tions coupled by their nonlinear terms. The first equation
governs the vertical velocity of the convective flow, the
second equation accounts for the large scale mean flow
alluded to above, and the third equation describes the
temperature field with a nonlinear coupling to the flow
velocity. To compare their model with ours, it is impor-
tant to realize that the Swift-Hohenberg model that we
study is a real space approximation of the Fourier trans-
form form. An accurate solution requires an exact inver-
sion in Fourier space, but leads to a complicated convolu-
tion. The real space approximation to the exact inversion
that we use is the main difference between the model of
Decker et al. and our Swift-Hohenberg model, although
both methods apply the projection method and reduce
the original three-dimensional hydrodynamic equations
to a two-dimensional problem. Decker et al. treat the
nonlinear terms exactly for the system, whereas we make
a real space approximation. It is clear that their treat-
ment has several advantages over our previous and cur-
rent work, in that the model reproduces the Busse bal-
loon, whereas the corresponding stability limits for our
model differ from the Busse balloon. Also, our model
has an unphysical short-wavelength cross roll instability,
which means that our results for large ¢ are inaccurate.
On the other hand, our model has the advantage of in-
corporating large scale numerical simulation, so that we
can examine the dependence of spiral chaos on the two
control parameters for the system (the reduced Rayleigh
number and Prandtl number, respectively). Also, we can
simulate the experimentally interesting case of large as-
pect ratio. Finally, we note that it is straightforward to
calculate the analog of the Busse balloon for our model.
We have done so and found the results are essentially the
same as found by Greenside and Cross [22] for a quite
similar model. We refer the interested reader to their
paper for the details of the stability diagram.

The rest of the paper is organized as follows. In Sec.
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II, we give a brief description of the theoretical model
used to describe the spiral chaos pattern formation in
Rayleigh-Bénard systems. In Sec. III we present various
numerical results and show spatiotemporal spiral chaos
pattern formation. We also show that the power spec-
trum of the convective current has a power-law behavior,
f2, at large frequency f. In Sec. IV, we study the tran-
sition from a global parallel roll state to a spatiotemporal
spiral chaos state, and address the question of the nature
of this phase transition. In Sec. V, we present a brief
conclusion.

II. A TWO-DIMENSIONAL MODEL
FOR RAYLEIGH-BENARD CONVECTION

We model Rayleigh-Bénard convection by a two-
dimensional generalized Swift-Hohenberg model [20,21],
defined by Egs. (1)—(4) below, which we solve by numer-
ical integration. The Swift-Hohenberg equation and var-
ious generalizations of it have proven to be quite success-
ful in explaining many of the features of convective flow
in fluids, particularly near onset [22,23,15]. Our model is
defined in dimensionless units by

O(Tt) L o Ty = [e’ - (V2 + 1)2] P — 929 — 9%,

ot
1)

(_% — Pr(V?— cz)] V(= [WV2¢) X W] &, (2)

where U is the mean-flow velocity,

U = (8y¢)é= — (9:C)é,. 3)

The boundary conditions are,

Ylp=1-Vlp=(lp=1-V{s=0, (4)

where 72 is the unit normal to the boundary of the domain
of integration, B. Equation (1) with g» = g, = 0 reduces
to the Swift-Hohenberg (SH) equation. The scalar or-
der parameter (7, t) is related to the fluid temperature
in the midplane of the convective cell, g, is the “non-
Boussinesq parameter,” and ((7,t) is the vertical vortic-
ity potential where the vertical component of the vortic-
ity w, is given by w, = (V x V), = —V2¢. Thus Eq. (2)
is an equation of motion for w,. Mean flow arises when w,
is driven by roll curvature and amplitude modulations.
Coupling to mean flow has been shown to play a key role,
for example, in the onset of weak turbulence in Boussi-
nesq fluids [21,24,25]. The quantity € is the scaled con-
trol parameter, ¢ = (kT‘zg)eexpt, where €expt = (—I% -1)
is the reduced Rayleigh number. Here R is the Rayleigh

number, R, is the critical Rayleigh number for an infinite
system, k. is the critical wave number, & is the character-
istic length scale, Pr is the Prandtl number, and c? is an
unknown constant. We note [26] that the dimensionless
time ¢ in Egs. (1) and (2) is related to the experimental
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time 7 by t = (%27—503)7'/((12/&), where d is the cell thick-
ness, k. = 3.117, £2=0.148, 70 = 0.076 93 (for Pr=1.0) for
the rigid-rigid boundary condition, and k is the thermal
diffusity.

The values of g and Pr that enter the equation have
been chosen in the range appropriate for earlier exper-
iments of Bodenschatz et al. on CO; [12]. In order
to approximate g, in terms of experimentally measur-
able quantities, we have derived a three mode amplitude
equation from the generalized Swift-Hohenberg equation.
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From the experiments described in [12], we have esti-
mated g2 =~ 0.35. We have chosen g,, ~ 50 which is
about four times the estimated experimental value. (If
we use the experimental value of g,,,, we see spiral chaos
at a large value ¢ > 1, but this value of € is beyond the
expected range of validity of the Swift-Hohenberg equa-
tion.) The value of €' used in the numerical simulation
is 0.7, which is related to the experimental value €expt
in Ref. [12] by €expt = 0.3594€'=0.2516. We have chosen
c? = 2 to simulate approximately the experimental rigid-

FIG. 1. (a) A typical configuration of the spiral chaos state. Dark regions correspond to hot rising fluid and white regions
to cold descending fluid. The field (z,y,t) is shown here. Dark regions correspond to % > 0 and light regions to ¥ < 0.
(b) A snapshot of the mean-flow field ¢(z,y,t) that corresponds to the configuration shown in (a). White and dark regions
correspond to clockwise and counterclockwise rotation of the spiral, respectively. (c) A snapshot of the vertical vorticity field
wz(z,y,t) that corresponds to the configuration shown in (a). White and dark regions correspond to counterclockwise and
clockwise rotation of the spiral, respectively. The configuration shown is ¢ = 900.
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FIG. 2. (a)—(c) Circularly averaged corre-
4 lation function (C(r)) for (a) the vertical vor-
ticity (C., (7)), (b) the velocity field (Cy(r)),
1 and (c) the mean-flow field (C¢(r)). Here ()
denotes a time average and r is in units of
the critical wavelength . = 27 /k..
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rigid boundary condition. (Note that ¢ = 0 corresponds
to a free-free boundary condition.)

III. NUMERICAL RESULTS

In this section, we present various numerical studies
based on Egs. (1)—(4) in a large aspect ratio cell. We
begin with the study of the spiral chaos pattern forma-
tion from the conduction state. We characterize the spi-
ral chaos state by calculating correlation functions of the
order parameter ¥ (7,t), the mean-flow field ¢((7,t), and
vertical vortex field w, (7, t), respectively. Next, we study
the mechanism of formation of the spiral chaos state. We
investigate the roles of the non-Boussinesq effect, Prandtl
number, aspect ratio of the cell, and sidewall forcing on
the formation of the spiral state. We also study the tran-
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sition from the parallel roll state to the spiral state. We
use the spectra entropy and vortex energy to characterize
the transition.

We consider as initial condition [(F) = 0] a Gauss-
ian random variable with zero mean and variance 107%.
We numerically solve Eqs. (1)-(4) in a circular cell of
radius 7 = 327, which corresponds to an aspect ratio
' =r/m = 32. A grid with N2 nodes has been used
with spacing Az=Ay=647/N, and N = 512. We ap-
proximate the circular boundary conditions on v and ¢
by taking ¢(7,t) = {(7,t) = 0 for ||F]| > D/2, where 7 is
the location of a node with respect to the center of the
domain, and D is the diameter of the circular domain.

Our main result is that the GSH model exhibits a spa-
tiotemporal spiral chaos state which spontaneously forms
as one changes €’ during the transition from the conduc-
tion state. This spiral chaos state is remarkably similar
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FIG. 3. (a) Time evolution of convective
current J(t) for spiral-defects chaos state
with aspect ratio I' = 32. The values of
the parameters used are € =0.7, go = 0.35,
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in visual appearance to that observed experimentally [9];
there the system was also quenched from the conduction
state. Figure 1(a) shows a typical configuration of the
spiral chaos state. Dark regions correspond to hot ris-
ing fluid and white regions to cold descending fluid. It is
now known that the mean-flow field plays a major role
in the dynamics of pattern formation in these convec-
tive systems. Figures 1(b) and 1(c) show the mean-flow
field {(z,y,t) and the vertical vorticity field w,(z,y,t)
that correspond to the configuration shown in Fig. 1.
White and dark regions in the mean-flow field correspond
to clockwise and counterclockwise rotations of the spiral,
respectively, and vice versa for the vertical vorticity field.
In contrast to the spiral chaos patterns which have spa-
tial order of k!, the vertical vorticity fields are highly
localized in space. This suggests that the dynamics of
these vorticity fields can be described in term of the dy-
namics of “particlelike” motion, although we have not
attempted to do this.

One of the important ways to characterize spiral chaos
is through the correlation function which describes the lo-
calized coherent spiral structure. The vorticity-vorticity
correlation function (C,,, (7)) is shown in Fig. 2(a), where
() denotes a time average. Its behavior reveals a very
compact core structure for the spiral as shown in Fig.
2(a). We also have calculated the corresponding spa-
tial correlation functions (Cy (7)) and (C¢(7)). These are
shown in Figs. 2(b) and 2(c), respectively. We see from
Fig. 2(a) that the circularly averaged (Cy(r)) has an
oscillatory behavior with a corresponding decay of the
envelope function that can be fit by an exponential func-
tion. If one uses the exponential function to define a
correlation length, one finds £ = 1.2), at € = 0.7, where
Ac is the critical wavelength near onset.

To analyze the temporal dynamics of the spiral-defect
chaos state, we use the dimensionless convective heat cur-
rent J(t) defined as

=+ / Pp(7,1)? (5)

where S is the dimensionless area of the cell. Figure
3(a) shows a representative time series of J(t) for the
spiral-defect chaos pattern. We note that the temporal
dynamics has a stochastic behavior and fluctuates around
a mean value of (J)=0.32. The power spectrum of J(t) in
Fig. 3(b) clearly shows a power-law f~% behavior, with
a ~ 2. This result would seem to be of experimental and
theoretical interest. Our results here differ from an earlier
numerical study of defect dynamics in smaller cells [25],
in which a power-law behavior at higher frequencies is
observed, with an exponent a ~ 6. However, the authors
[25] do not study spiral chaos; therefore this difference
in exponent values does not seem surprising. It would
be of interest to study experimentally this 1/f2 noise
phenomena in spiral-defect chaos.

The classical work of Busse provides considerable infor-
mation about the dynamical behavior of the system. In
addition to predicting that inside the so-called Busse bal-
loon [17] parallel rolls are stable, his theory also predicts
a variety of secondary instabilities. However, his theory
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does not predict the spiral chaos state that we have stud-
ied. As we noted in the Introduction, however, one might
ask whether this spiral state is induced by the bending
of rolls due to the sidewall. To investigate this equation,
we have studied the spiral chaos pattern formation in the
presence of the sidewall forcing. The main motivation for
such a study is the fact that sidewall forcing will induce a
concentric roll state for a cylindrical cell (target pattern)

FIG. 4. Spiral chaos pattern formation in the presence of
the sidewall forcing in (a) a cylindrical container and (b) a
square container. The configuration shown has evolved from
random initial conditions with aspect ratio I' = 32. The val-
ues of the parameters used are g» = 0, g, = 50, Pr=1, and
c® = 2. The parameter € is quenched from 0 to 0.7, and a
localized force field f = 0.1 near the wall was used in the
simulation.
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or a square roll for a square container in competition with
the spiral chaos state [15]. If spiral chaos indeed solely
arises from an intrinsic effect, i.e., not induced by con-
finement effects, then we should observe the spiral chaos
state in the presence of the sidewall forcing. This is in-
deed the case, as shown in Figs. 4(a) and 4(b), in which
the spiral chaos pattern is observed both in the circular
and square cells with the sidewall forcing.

The Rayleigh-Bénard problem has four independent
control parameters, namely the Rayleigh number €expt,

the Prandtl number Pr, the aspect ratio I, and the
nature of the convective fluid, i.e., Boussinesq or non-
Boussinesq fluid. To understand other aspects of the for-
mation of the spiral chaos state, we have studied the role
of each control parameter on the formation of the spiral
chaos state, and conclude that only a large mean-flow
field, i.e., small Prandtl numbers, and large aspect ratios
(large enough compared with the average size of a coher-
ent spiral structure), are relevant for the existence of the
spiral chaos state.

FIG. 5. (a)~(j) This sequence of configurations shows the typical convective pattern as a function of the control parameter €.
One may distinguish between two different regimes: one is dominated by the global parallel roll state, the other is dominated
by the spiral chaos state. The transition from global parallel roll to spiral chaos state occurs when €, ~ 0.25. The control
parameters are (a) €'=0.2, (b) €'=0.22, (c) ¢'= 0.25, (d) ¢'= 0.27, (e) €'= 0.3, (f) €'= 0.35, (g) €= 0.4, (h) ¢'= 0.5, (i) €= 0.8,
and (j) €= 0.7. The values of the other parameters used are gz = 0.35, g, = 50, ¢> = 2, and Pr=1.
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FIG. 5. (Continued).
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FIG. 6. The dependence of spectra en-
tropy S(€¢') for the pattern shown in Fig.
5 versus the control parameter €. Note
that the curve increases rather rapidly near
the value €. = 0.25, indicating the first ap-
pearance of defects which destroy the global
parallel state. A fitting curve shows that
S(e') — S(el) = A(€ — €)™, ¢ > €., with
a=0.3, A~ 3.5, S(e.) = 5.5, and €. = 0.25.

FIG. 7. (a) A plot showing the quantity
Q(€') as a function of the control parame-
ter € for the same pattern sequence shown
in Fig. 5. Again, note that there is a rela-
tively sharp change in the curve at €. = 0.25.
(b) A plot log10(2) vs logio(€’) showing that
Q(e') ~ Q(el) = C(€ —€L)?, with Q(el) = 0.1
and 8 ~ 2.9.
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Convective current E(¢)
o
N
T

b FIG. 8. The convective current E(€')
against the control parameter €’ for the same
. pattern sequence shown in Fig. 5. Note that
there is no sign of a sudden change in the
. curve. The convective current increase lin-
early with the control parameter.

IV. TRANSITION TO SPATIOTEMPORAL
SPIRAL CHAOS

An interesting question that has been discussed re-
cently is whether or not the transition to spatiotemporal
chaos is a phase transition somewhat similar to those
encountered in critical phenomena. A number of quanti-
ties have been used to characterize such transitions, such
as the defect density in the complex Ginzburg-Landau
equation [27] and the distribution of laminar domain size
in the Kuramoto-Sivashinsky model [28]. A more global
approach has also been used to describe spatiotemporal
chaos. There have been measurements of spatiotempo-
ral chaos in Rayleigh-Bénard convection in annular cells
[29]. In these experiments, an attempt has been made
to characterize the transition to spatiotemporal chaos by
introducing some global quantities, such as the spectra
entropy and energy as a function of the control parame-
ter.

In this section, we study the transition from the glob-
ally ordered parallel roll state to globally disordered but
locally ordered spiral chaos state. One possible way to
characterize this transition is to use the spectra entropy
[30], which can be used to characterize either global order
or spatiotemporal chaos. One of the advantages of using
the spectra entropy is its relative ease of computation.
It is computed from the power spectra, which may be
calculated experimentally. The spectra entropy S(€') is
defined as

S(e) = —<Z(P,;,t1np,;,t)>7 (6)
E

where p; , is the relative weight of the spatial mode Ein
the power spectrum, and is defined as

2(k,t
e, = |92 (K, t)]

= - 7
TN R, ) @
i

Here () denotes a time average and €' denotes a control
parameter.

We choose the energy E(€') to be the convective cur-
rent, i.e.,

E(e’)=(J(t))=%< / / 1/)2(x,y,t)dmdy>. (8)

Here A is the area of the domain.

We will also use another global measure which is re-
lated to the vertical vortex field (mean-flow field) during
the transition to the spiral chaos state. As we discussed
in the Introduction, for a global parallel roll state, the
vortex field is identically zero everywhere. On the other
hand, a localized spiral state has a nonzero vortex field.
Furthermore, the transition from a global parallel roll
state to a localized spiral chaos state indicates that there
is broken symmetry. We define this quantity Q as

) = 57 [ [y )dsds, (9)
where
w, = —VZ(. (10)

Q is used as a means for measuring the amount of ro-
tational activity inside the spiral structures. In fact, the
density %wf is an important local quantity that measures
directly the local spiral rotational velocity. It also serves
as a measure of the order for the transition to the spa-
tiotemporal chaos state. The quantity  is reminiscent
of a Kolmogorov energy formulation in two-dimensional
flow systems [31]. In the following, we present a numeri-
cal study of pattern formation of the convective roll state
as a function of the control parameter (¢’).

A. Spectra entropy S(€')

For each value of control parameter €, we use a random
initial condition (Gaussianly distributed with zero mean
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and a variance 10™%), with the same parameters as in
Fig. 1. Figures 4(a)—4(j) show the different pattern con-
figurations as a function of the control parameter. The
existence of two different ordered regimes is clearly seen
in Fig. 5: one is dominated by the global parallel roll
state, and the other is dominated by the spatiotemporal
spiral chaos state. The first appearance of defects which
destroy the global parallel rolls and lead to the transition
to the spiral chaos state occurs when the control param-
eter is ¢ =~ 0.25 [see Fig. 5(d)]. Figure 6 shows the de-
pendence of the spectra entropy of the pattern structure
versus the control parameter. The curve increases rather
rapidly near the value €, ~ 0.25, indicating that there is
a transition to the spiral chaos state. We have tried to
quantitatively characterize the transition by computing
S as a function of €. If one assumes that the transition
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can be described by a power behavior, i.e.,

S(e') — S(e) = A(€ — €)™, € > €., (11)

we find a = 0.3, A =~ 3.5, S(€.) ~ 5.5, with €/, = 0.25.
Thus if this is a second-order transition, a rough estimate
of the exponent « is about 0.3. We should also note that
we would interpret S(e,) as arising from boundary effects;
i.e., we would expect S(€.) to vanish for an infinite sys-
tem. It is important to note, however, that our data are
also consistent with a first-order phase transition, since
due to the numerical limitations, and boundary effects,
our resolution near the threshold is limited in the region
0.25 < € < 0.27.

FIG. 9. (a)—(c) A snapshot of the spiral chaos state for a large aspect ratio of I' = 64; (a) order parameter %, (b) mean flow

¢, and (c) vertical vorticity w,.
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B. Q(€')

The transition to spiral chaos may also be character-
ized by measuring the quantity 2, as a function of the
control parameter. In Fig. 7(a), we plot Q as a func-
tion of the control parameter ¢/. Notice that there is a
relatively sharp change in the curve at €, =~ 0.25 which
marks a distinction between global parallel flow and spa-
tiotemporal spiral flow. Again, the absence of a sharply
defined critical point is possibly due to numerical limita-
tions. We also observe that 2(¢’) behaves according to
a power law in the spiral chaos state: Q(¢') — Q(el) =
C(€'—¢.)P, where Q(e.) = 0.1 and a rough estimate yields
B = 2.94£0.1 as shown in Fig. 7(b). It would be interest-
ing to verify our numerical results through experimental
work.

C. Convective current E(¢€')

Figure 8 shows the numerical results of the time aver-
aged convective current (J) versus the control param-
eter. Omne notices that the energy increases linearly
with the control parameter, as one would expect for
usual Rayleigh-Bénard convection at low Rayleigh num-
ber. There is no sign of a sudden change near the thresh-
old €/, = 0.25. This is in contrast to what happens in
the “one-dimensional” Rayleigh-Bénard convection in the
annular geometry [29], in which one observes a sharp in-
crease near the transition to the spatiotemporal chaos
state.

Finally, we have also studied spiral chaos in an even
larger aspect ratio cell (I'=64). Figure 9 shows a snap-
shot of the spiral chaos pattern formation obtained in the
large cell. To study the effect of finite size on the spiral
chaos state, we compared the spatial correlation func-
tions (Cy (7)) obtained for a large aspect ratio I' = 64
and an aspect ratio I' = 32, respectively, and found that
the two results are essentially identical.
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V. CONCLUSION

We have presented numerical evidence for the existence
of the spiral chaos state in the extended two-dimensional
Rayleigh-Bénard convection system. Our numerical re-
sults are consistent with the observation of spatiotempo-
ral spiral chaos in experiment. We have displayed the
images of the large scale mean-flow field {(z,y,t) and
the vertical vorticity w,(z,y,t) in a spiral chaos state.
The vorticity field w, is very localized spatially and its
dynamics is particlelike. These mean-flow and vorticity
patterns have not been able to be studied in the exper-
imental studies. Our simulations predict that there is a
1/f? power-law behavior in the temporal dynamics of
spiral defect chaos in a large aspect ratio system. A
theoretical understanding of this 1/f2 noise is not yet
known. The spiral chaos state is found to exist only for
low Prandt]l numbers and for large aspect ratios. These
facts suggest that the large mean flow induces the spiral
chaos state in a large aspect ratio system. We have char-
acterized the spiral chaos state quantitatively through
calculating the Fourier power spectra and spatial corre-
lation functions, some of which (mean flow and vorticity)
have not been measured in the experimental studies. We
have also attempted to study the nature of the transition
from the parallel roll to spiral chaos state, but have been
unable to determine whether this is a sharp or gradual
transition. Finally, we note that after our work was com-
pleted, we received unpublished results from Cross and
Tu [32], who proposed a very interesting theory for spiral
chaos. They argue that the dynamics of spiral defects is
controlled by wave-number frustration instead of simply
being driven by the mean-flow field. Further work on this
subject is clearly necessary.

ACKNOWLEDGMENTS

We thank Jorge Vinals for many helpful discussions.
This work was supported by the National Science Foun-
dation under Grant No. DMR-9401985. The calculations
reported here have been carried out on the Cray C-90 at
the Pittsburgh Supercomputing Center.

(1] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65,
851 (1993).

(2] Ordered and Turbulent Patterns in Taylor-Couette Flow,
Vol. 297 of NATO Advanced Study Institute Series B:
Physics, edited by C. David Andereck and F. Hayot
(Plenum, New York, 1992).

(3] J. P. Gollub and R. Ramshankar, in New Perspectives in
Turbulence, edited by L. Sirovich (Springer-Verlag, New
York, 1991), p. 165.

[4] P. Kolodner and C. M. Surko, Phys. Rev. Lett. 61, 842
(1988); V. Steinberg and E. Kaplan, in Spontaneous For-
mation of Space- Time Structures and Criticality, Vol. 349
of NATO Advanced Study Institute, Series C: Mathemat-
ical and Physical Science, edited by T. Riste and D. Sher-
rington (Kluwer, Dordrecht, 1991).

[5] F. T. Arecchi, G. Giacomelli, P.L. Rammazza, and S.
Risidori, Phys. Rev. Lett. 65, 1579 (1990); J.V. Moloney
and A. Newell, Physica D 44, 1 (1990).

[6] P. Clavin, in Physico Chemical Hydrodynamics, edited by
M. Velarde (Plenum, New York, 1988).

[7] G. Nicolis and 1. Prigogine, Self-Organization in Non-
equilibrium Systems (Wiley, New York, 1977); H. L.
Swinney and V. I. Krinsky, Physica D 49, 1 (1991); G.
S. Skinner and H. Swinney, ibid. 48, 1 (1991).

(8] G. Ahlers and R. P. Behringer, Prog. Theor. Phys. Suppl.
64, 186 (1978); G. Ahlers, D. S. Cannell, and V. Stein-
berg, Phys. Rev. Lett. 54, 1373 (1985); M. S. Heut-
maker and J. P. Gollub, Phys. Rev. A 35, 242 (1987);
P. Manneville, Dissipative Structures and Weak Turbu-
lence (Academic, New York, 1990).



52 SPATIOTEMPORAL CHAOS IN A MODEL OF RAYLEIGH- . ..

[9] S. Morris, E. Bodenschatz, G. Ahlers, and D. S. Cannell,
Phys. Rev. Lett. 71, 2026 (1993).

[10] Y. Hu, R. E. Ecke, and G. Ahlers, Phys. Rev. Lett.
72, 2191 (1994); 74, 391 (1995); Phys. Rev. E 51, 3263
(1995).

[11] M. Assenheimer and V. Steinberg, Nature 367, 345
(1994).

[12] E. Bodenschatz, J. R. de Bruyn, G. Ahlers, and D. S.
Cannell, Phys. Rev. Lett. 87, 3078 (1991).

[13] M. Bestehorn, Phys. Lett. A 174, 48 (1993).

[14] Haowen Xi, J. D. Gunton, and J. Vifials, Phys. Rev. Lett.
71, 2030 (1993). ,

[15] Haowen Xi, J. Vifals, and J. D. Gunton, Phys. Rev.
A 46, R4483 (1992); Haowen Xi, J. D. Gunton, and J.
Viiials, Phys. Rev. E 47, R2987 (1993).

[16] M. Bestehorn, Phys. Rev. E 50, 625 (1994).

[17] F. H. Busse, Rep. Prog. Phys. 41, 1929 (1978).

[18] Y. Pomeau, Physica D 23, 3 (1986).

[19] W. Decker, W. Pesch, and A. Weber, Phys. Rev. Lett.
73, 648 (1994).

[20] J. Swift and P. C. Hohenberg, Phys. Rev. A 15, 319
(1977).

[21] P. Manneville, J. Phys. 44, 759 (1983).

4975

[22] H. S. Greenside and W. M. Coughran, Jr., Phys. Rev.
Lett. 49, 726 (1982); Phys. Rev. A 30, 398 (1984); H. S.
Greenside and M. C. Cross, ibid. 31, 2492 (1985).

[23] M. C. Cross, Phys. Fluids 23, 1727 (1980); Phys. Rev. A
25, 1065 (1982); 27, 490 (1983).

[24] E. D. Siggia and A. Zippelius, Phys. Rev. Lett. 47, 835
(1981); A. Zippelius and E. D. Siggia, Phys. Rev. A 286,
1788 (1982); Phys. Fluids 26, 2905 (1983).

[25] H. S. Greenside, M. C. Cross, and W. M. Coughran, Jr.,
Phys. Rev. Lett. 60, 2269 (1988).

[26] We note that the horizontal diffusion time is I'Z.

[27] B. I. Shraiman, A. Pumir, W. van Saarloos, P. C. Ho-
henberg, H. Chaté, and M. Holen, Physica D 57, 241
(1992).

[28] H. Chaté and P. Manneville, Phys. Rev. Lett. 54, 112
(1987); Physica D 32, 409 (1988).

[29] M. Caponeri and S. Ciliberto, Physica D 58, 365 (1992).

[30] G. C. Powell and I. C. Percival, J. Phys. A 12, 2053
(1979).

[31] R. H. Kraichnan, Phys. Fluids 10, 1417 (1967); G. K.
Batchelor, ibid. Suppl. 2 12, 233 (1969).

[32] M. Cross and Yuhai Tu (unpublished).



FIG. 1. (a) A typical configuration of the spiral chaos state. Dark regions correspond to hot rising fluid and white regions
to cold descending fluid. The field ¥(z,y,t) is shown here. Dark regions correspond to 3 > 0 and light regions to ¢ < 0.
(b) A snapshot of the mean-flow field ¢(z,y,t) that corresponds to the configuration shown in (a). White and dark regions
correspond to clockwise and counterclockwise rotation of the spiral, respectively. (c) A snapshot of the vertical vorticity field
w;(x,y,t) that corresponds to the configuration shown in (a). White and dark regions correspond to counterclockwise and
clockwise rotation of the spiral, respectively. The configuration shown is t = 900.
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FIG. 4. Spiral chaos pattern formation in the presence of
the sidewall forcing in (a) a cylindrical container and (b) a
square container. The configuration shown has evolved from
random initial conditions with aspect ratio I' = 32. The val-
ues of the parameters used are g; = 0, g, = 50, Pr=1, and
¢ = 2. The parameter ¢ is quenched from 0 to 0.7, and a

localized force field f = 0.1 near the wall was used in the
simulation.
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FIG. 5. (a)-(j) This sequence of configurations shows the typical convective pattern as a function of the control parameter ¢'.
One may distinguish between two different regimes: one is dominated by the global parallel roll state, the other is dominated
by the spiral chaos state. The transition from global parallel roll to spiral chaos state occurs when €. ~ 0.25. The control
parameters are (a) € =0.2, (b) €' =0.22, (c) ¢'= 0.25, (d) €= 0.27, (e) €'= 0.3, (f) €'= 0.35, (g) €'= 0.4, (h) ¢'= 0.5, (i) €'= 0.6,
and (j) €= 0.7. The values of the other parameters used are gz = 0.35, gm = 50, ¢ = 2, and Pr=1.
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(b) mean flow

(a) order parameter 1,

= 64;

(c) A snapshot of the spiral chaos state for a large aspect ratio of I’

FIG. 9. (a)
¢, and (c) vertical vorticity w..



